¿Sabes qué profesionales necesitarán las empresas los próximos años?
Te presentamos los 12 perfiles más demandados en un futuro próximo En IndesIA, la asociación de inteligencia artificial de la industria española, trabajamos mano a mano con las principales empresas industriales del país. La tendencia del sector empresarial se dirige la aplicación de la tecnología big data e inteligencia artificial (IA) en toda la cadena de valor de la industria. ML Engineer Profesional englobado/a en el entorno de TI que se enfoca en investigar, construir y diseñar sistemas de inteligencia artificial (IA) autoejecutables para automatizar modelos predictivos. Además, diseñan y crean los algoritmos de IA capaces de aprender y hacer predicciones. Tienen que operativizar y optimizar los modelos y algoritmos desarrollados. Data Architect Profesional que se encarga de definir la estrategia de datos, incluyendo la implantación y gestión de las arquitecturas de inteligencia artificial (IA)creando una gestión integrada de sistemas para centralizar, -proteger y mantener las fuentes de datos. Requiere amplios conocimientos en plataformas de inteligencia de negocio, estándares de arquitectura, así como arquitectura empresarial y arquitectura de sistemas. Data Engineer Profesional responsable de diseñar, construir, probar y mantener la arquitectura de datos (es decir, bases de datos de procesamiento a gran escala) y procesos de datos que permitan la mayoría de las funciones en el mundo de los datos, por lo que será requerido un amplio conocimiento en bases de datos relacionales. Además de ser capaz de ensamblar un gran volumen de datos complejos, que cumplan los requisitos empresariales no funcionales y funcionales, así como determinar las necesidades de almacenamiento de datos. También será su responsabilidad construir la infraestructura necesaria para la extracción, transformación y carga óptimas de datos de diversas fuentes, con el objetivo de lograr una alta escalabilidad, una entrega de datos eficiente en procesos automáticos. IoT Specialist Profesional experto/a en encontrar soluciones de conectividad entre procesos. Conoce protocolos de comunicación, así como los principales componentes de una red y tiene conocimiento sobre el software que conecta el mundo IT con el mundo OT. Sus habilidades de programación básicas le permiten llevar a cabo la conexión entre estos dos mundos. Además, puede establecer estándares de ciberseguridad y es capaz de auditar y realizar propuestas para su aseguramiento. Data Scientist Profesional especialista en el manejo de los datos que se encarga de recoger, analizar e interpretar grandes conjuntos de datos complejos para desarrollar soluciones basadas en datos y resolver difíciles retos empresariales. Desarrollará modelos (descriptivos, predictivos o prescriptivos) y herramientas de aprendizaje estadístico para el análisis de datos incluyendo algoritmos de aprendizaje automático. Data Visualization Profesional responsable de la creación y edición visual del contenido, realizando la extracción, transformación y cargas del conjunto de datos en mapas o gráficos, cuadros de mando o informes más visuales que sirvan al resto de la organización en su interpretación y permita la toma de decisiones. Data Governance Profesional especialista que asegurará la disponibilidad de los datos, su integridad, usabilidad y la seguridad de los mismos. Facilitará los mecanismos y directrices basados en principios y mejores prácticas para el eficaz ejercicio del gobierno del dato. Se encargará de la coordinación transversal de los negocios y las funciones para la explotación y democratización del dato. Data Steward Profesional especialista que garantizará la calidad y coherencia de los datos asegurando que son adecuados para su uso dentro del ámbito de las necesidades de la organización de la manera más flexible y efectiva posible para lograr su máximo valor en conformidad con las políticas de la compañía y con terceras partes. Entre sus funciones se encuentran: definir las reglas de calidad de los datos. Identificar y definir los diferentes aspectos que pueden afectar a los datos en cuanto al tratamiento de los mismos y la autorización de ingesta y distribución de los datos a casos de uso. Debe tener también conocimientos legales y normativos que afectan al tratamiento de los datos. Data Translator Profesional que tiene conocimientos suficientes tanto en negocio, como técnicos para expresar las necesidades de la organización en un lenguaje que sea válido para que el científico/a de datos pueda realizar los modelos o algoritmos que cumplan los requisitos. Citizen Data Scientist Profesional con un conocimiento profundo en el negocio de la organización, que es capaz de realizar modelos analíticos predictivos sencillos. Debido a su alto conocimiento del negocio es capaz de presentar los resultados de la forma más adecuada, de manera que sea más sencilla la toma de decisiones. Industry 4.0 Specialist Profesional principalmente industrial, con habilidades que impulsen procesos de transformación digital y de gestión del cambio. Conoce cuáles son las tecnologías habilitadoras en industria 4.0 y es capaz de proponer soluciones (a alto nivel) para cada caso de uso. Por otro lado, es un perfil con habilidades sociales bien desarrolladas, que garantizan su capacidad para registrar los requerimientos del cliente de manera completa y correcta, ayudando a identificar problemas o mejoras en las plantas industriales. Además, tiene una gran capacidad para interpretar el negocio y compartirlo con los equipos más técnicos (Big Data, desarrollo software, redes, etc.). Data Analyst Profesional con gran conocimiento del negocio que recopila, procesa y gestiona datos relevantes para la empresa, estando encargado de su análisis estadístico con el objetivo de extraer conclusiones que permitan la toma de decisiones y aportación de valor. Se apoyan en plataformas de inteligencia de negocio y todas sus capacidades para el análisis de datos. ¿Qué habilidades necesitarán estos perfiles? Analítica de datos y estadística: capacidad para comprender una amplia gama de tipologías estadísticas de análisis y aplicar la más adecuada para resolver un reto específico (metodologías de investigación basadas en datos). Incluyendo las habilidades para la exploración de conjuntos de datos, con el objetivo de descubrir patrones y tendencias implícitos, mediante su análisis y técnicas descriptivas. Modelos analíticos y plataformas: capacidad para manejar lenguajes y marcos de trabajo en ciencia de datos para llevar a cabo análisis de datos o tareas de aprendizaje automático, así como lenguajes y herramientas de consulta de bases de datos y de visualización
¿Sabes qué profesionales necesitarán las empresas los próximos años? Leer más »